
Aleta March

amarch2u@hotmail.com

GEOG 375, American River College

Final Project, Spring 2020

Summary

This project demonstrates the use of a stand-alone Python script to retrieve real-time GeoJSON

data from the USGS Earthquake Hazards website and utilize the data to create and export maps

showing the location and magnitude of significant earthquakes worldwide.

Purpose

The purpose of this project was to utilize Python and ArcPy scripting to update a cumulative

database of global earthquake events using data retrieved from the USGS Earthquake Hazards

Program real-time GeoJSON Summary Format Significant Earthquakes feeds and produce and

export to PDF format a series of maps comprising:

1) a global map of the location of earthquake events that occurred in the time frame of the

real-time feed and the time frame of the cumulative database

2) local maps of the location of each individual earthquake event that occurred during the

time frame (day, week, month) covered by the GeoJSON feed selected by the user.

Data Source

Raw data for this project were obtained from the USGS Earthquake Hazards website

https://earthquake.usgs.gov/earthquake/feed/v1.0/geojson.php which provides three real-time

Significant Earthquake Real-time Feeds updated every minute:

"USGS Significant Earthquakes, Past Day"

https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_day.geojson

"USGS Significant Earthquakes, Past Week"

https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_week.geojson

"USGS Significant Earthquakes, Past Month"

https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson

These “GeoJSON Summary Format” feeds use the GeoJSON format, based on the JavaScript

Object Notation (JSON) standard, to encode point geographic data structures (Crockford;

“GeoJSON”).

Methods

Pre-script Requirements

In order for the Python script to function, a file geodatabase must be available to store, query,

and manage spatial and non-spatial data (“What is a File Geodatabase?”). Two file geodatabases

were created on disk from an ArcGIS Pro 2.4 project: one to handle the cumulative database and

feature class located at C:\temp\Final_Project\Data\eq_base.gdb and one to handle in real-time

table and feature class located at C:\temp\Final_Project\MyData\eq_output.gdb (“Create a File

Geodatabase”).

mailto:amarch2u@hotmail.com
https://earthquake.usgs.gov/earthquake/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_day.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_week.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson

Geoprocessing

Data transformation and information flow from one geoprocess to another was a particularly

important aspect of the script. Part I of the script governs the retrieval and extraction of data and

management of the tables and feature classes. Part II controls map creation and export.

Part I: Data Management

The information flow begins with the retrieval of the GeoJSON data from the USGS website

(Severance 158-160, 163-165; “JSON Encoding”)

import json

import urllib.request, urllib.parse, urllib.error

Open connection "url handle" to URL

urlhand = urllib.request.urlopen(url)

Read data as bytes and convert to JSON string

data = urlhand.read().decode()

print('Retrieved ', len(data), 'characters')

Convert (deserialize) JSON string to Python dictionary

jsdata = json.loads(data)

Convert to JSON string, then "print it pretty" to examine data structure

print(json.dumps(jsdata, indent=4))

The GeoJSON data is printed out in an easy-to-read format similar to a Python dictionary:

Next, the data is extracted using indexing:

• magnitude = entry[[‘properties’][‘mag’]

• place = entry[‘properties’][‘place’]

• lon = entry[‘geometry’][‘coordinates’][0]

• lat = entry[‘geometry’][‘coordinates’][1]

The extracted data may have to be transformed if the format and type differ from that required by

the table fields. The following is a good example of a complicated transformation of the

earthquake event time to conventional date and time.

Let the Geoprocessing Begin!

arcpy.CreateTable_management Empty Real-time Output Table

arcpy.AddField_management

[Create base table if it does not exist using Empty Cumulative Base Table

arcpy.Copy_management]

InsertCursor Populated Real-time Output Table

 InsertRow

arcpy.MakeTableView_management Populated Real-time Feature Class

arcpy.management.XYTableToPoint

arcpy.da.SearchCursor Base Table with Updated Rows

 arcpy.da.UpdateCursor

 Produces Two Lists of Row Tuples

 updated_event_rows

 new_event_rows

These lists are key to the remainder script. They contain the values of rows that will be updated

or added to the base table and feature class.

arcpy.da.InsertCursor Base Feature Table with New Event Rows Added

 InsertRow Sample Row Tuple
 ('us70008jr5', '2020-03-31', '23:52:31.094000', 6.5,

 '72km W of Challis, Idaho', -115.1355972290039,

 44.46030044555664, 14.529999732971191, 1587859423232.0)

[Create base feature class Base Feature Class

 if it does not exist using

 arcpy.management.XYTableToPoint]

arcpy.da.UpdateCursor Base Feature Class with Updated Rows

 UpdateRow Sample Row Tuple
 ((-115.1355972290039, 44.46030044555664), 'us70008jr5', '2020-03-31',

 '23:52:31.094000', 6.5, '72km W of Challis, Idaho', -115.1355972290039,

 44.46030044555664, 14.529999732971191, 1587859423232.0)

 NOTE: inserting or updating a row in a feature class is different than in a table because a geometry

 must be written.

1) The field list must include the ‘Shape’ field in the initial position

2) The ‘SHAPE@XY’ geometry token may be used in place of ‘Shape’ in the field list

3) The row tuple to be inserted must have a Point value tuple (lon, lat) in the initial position

to populate the ‘Shape’ field (see highlighted tuple above).

arcpy.da.InsertCursor Base Feature Class with New Event Rows Added

 InsertRow ((-85.70989990234375, 16.93320083618164), 'us70008xeb', '2020-04-16',

 '08:04:37.597000', 6.0, '55km NNE of Savannah Bight, Honduras',

 -85.70989990234375, 16.93320083618164, 10.0, 1587751813120.0)

Part II: Map Creation and Export

This segment of the script is responsible for the production and export of maps showing the

location of earthquake events.

Output maps are variations of two types, global and local:

1) one global map at full map extent showing the cumulative base layer overlaid by the real-

time layer produced by the 1, 7, or 30-day real-time feed) with graduated point symbols

based on earthquake event magnitude

2) a group of local maps equivalent to the number of real-time events. Individual maps each

show a zoomed-in view of one real-time event, along with any previous events within the

map frame extent.

Geoprocessing is scant in this section. The arcpy.mp module is used to modify existing layout

elements, visibility of map frame layers, and map frame extents prior to the export of maps in

PDF format. The global map is printed at the full geographic extent of the base map.

A multi-step process is required to perform a zoom-in effect on an individual real-time event.

First, SelectByAttribute with a selection query produces a subset of the real-time layer and

GetExtent returns a derived extent (“Zoom Map”). Extent and scale of the map frame is then

controlled by the Camera object, mimicking zooming-in to a feature (‘Camera”).

Challenges / Solutions

Much of the basic geoprocessing code related to the use of insert, search, and update cursors,

selection queries, and map production was taken directly from the video lectures given by

Professor Jennings this semester (Jennings, Video Lectures) and from the workbooks he

authored (Jennings, Python Primer 1, 2, 3). Early in the process of creating the script, I relied

heavily on these coding templates, to the point of using some of the same variable names, until I

gained familiarity with the concepts. As I progressed in my learning, I was able to customize and

build on these scripts, incorporating additional processes using original code.

Many programming issues resulted from my inexperience using Python and were eventually

overcome. One problem that was resolved after considerable effort pertained to the use of the

geometry token ‘SHAPE@XY’ when adding a feature to a feature class (“How To: Add

Features”). Silver lining: it gave me the opportunity to post something on GeoNet (“Add Row”).

At the conclusion of the project, three problems remained unresolved. The first two issues are

related to basic ArcPy programming concepts and the third may be specific to either the input

data format or the program logic. In addition, a deficiency with respect to exception code was

noted.

 PROBLEM 1: Unable to Control the Position of Rows Inserted into a Table

As a consequence of the manner in which the arcpy.da.InsertCursor and InsertRow functions

operate, new rows are inserted at the bottom of a table. This results in the creation of the

cumulative base table with the oldest event at the top of the table and the newest event at the

bottom, preserving the order of the table as it accumulates rows. The disadvantage is that it

increases the time it takes to search the existing base table, to determine the necessity of an

event addition or update. As the base table accumulates more rows, the search time will

become increasingly longer. If the order were reversed, the comparison of the real-time

events with the most recent events in the base table would be more efficient.

In my hunt for a solution, I tried to find a way to add a row to the top of the table or to begin

a search at the bottom of the table. My attempts to find an elegant solution were futile.

Perhaps, due to inexperience, my viewpoint was so narrow that I could not recognize the

alternatives.

PROBLEM 2: Unable to Change Spatial Reference of Mapframe

It was my original intent to customize the spatial reference of the exported maps of

individual events according to their geographic location and extent. Unfortunately, I was

unable to do so, resulting in all maps being produced with WGS 1984 geographic coordinate

system and WGS 1984 Mercator Auxiliary Sphere projection.

It is my understanding that arcpy.mp does not yet provide a way to change the spatial

reference of mapframes or maps (“Allow arcpy.mp to Modify”). According to Jeff Barrette

of the ESRI arcpy.mp team, that functionality will be available with ArcGIS Pro 2.6.

A potential workaround would be to make several maps within the ArcGIS Pro project, each

with a different spatial reference and set up one layout to contain multiple mapframes. The

Python script would then be used to select and make visible only the mapframe with the

appropriate spatial reference for the extent of the exported map.

Pursuing this workaround proved beyond the time constraints of this project. I was able,

however, to create one additional test map with a spatial reference of NAD 83 / USA

Contiguous Lambert Conformal Conic, as shown below.

The corresponding mapframe was then added as a mapframe to the common layout, stacked

below the original mapframe.

 PROBLEM 3: Point Features Occasionally Missing from a Map

I have been unable to explain the infrequent (two occurrences) of a point feature missing

from a map. The data format of the GeoJSON input data matches that of the extracted data

output. There were no discernable differences between the rows of the faulty point features

and the others.

WGS 1984

NAD 83

DEFICIENCY: Custom Exception Code Not Included

Other than the Try:/Except statement surrounding the script, custom exception code was not

created for the script (Jennings, “Demo 6D”). Custom exception code designed to handle

errors caused by a faulty Internet connection or a request timing out would have been

beneficial. The rare instances that triggered the runtime error, “Not signed into Portal”, were

due to an unstable or absent Internet connection. This was verified by intentionally turning

off the Internet hotspot and running the script to re-create the error message. Although I did

some preliminary research on the urllib.request and urllib.error submodules, I did not feel

that I had sufficient knowledge to create the code required to raise a connection or timeout

exception (“urllib.error”; “urllib.request”).

Conclusion

This project has helped to change my perspective on programming for GIS. Prior to taking this

course, I thought using Python was all about coding syntax and logic and troubleshooting and

frustration. Well, it is, but it is also so much more! It involves knowing your data and

understanding how the software for which you are coding functions “under the hood”. I know

that I have barely scratched the surface, but even this little bit of knowledge has given me a lot of

power to learn more. It has been a long journey from printing “Hello World!” back in January.

References

“Add Row to Existing Point Feature Class”. GeoNet, ESRI, community.esri.com/thread/252156-

add-row-to-existing-point-feature-class.

“Allow arcpy.mp to Modify Spatial Reference Property of Map/MapFrame”. GeoNet, ESRI,

community.esri.com/ideas/12767-allow-arcpymp-to-modify-spatial-reference-property-of-

mapmapframe.

“Camera”. ArcGIS Pro – ArcPy | Documentation, ESRI, pro.arcgis.com/en/pro-

app/arcpy/mapping/camera-class.htm

“Convert Python Datetime to Timestamp in Milliseconds.” Stack Overflow, 20 Dec. 2017,

stackoverflow.com/questions/41635547/. Accessed 12 May 2020.

“Create a File Geodatabase.” ArcGIS Pro Help, ESRI, pro.arcgis.com/en/pro-

app/help/data/geodatabases/manage-file-gdb/create-file-geodatabase.htm. Accessed 8 May 2020.

Crockford, Douglas. “Introducing JSON.” JSON, json.org/json-en.html.

“Datetime — Basic Date and Time Types — Python 3.7.2 Documentation.” Python.Org, Python

Software Foundation, 2002, docs.python.org/3/library/datetime.html.

“GeoJSON.” GeoJSON, geojson.org/.

“GeoJSON Summary Format.” USGS Earthquake Hazards, United States Geological Survey,

earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php.

“Guidelines for arcpy.mp.” ArcGIS Pro – ArcPy | Documentation, ESRI, pro.arcgis.com/en/pro-

app/arcpy/mapping/ guidelines-for-arcpy-mapping.htm#ESRI_SECTION1_

B482E78268684B728BFF0636AAFF40FD. Accessed 13 April 2020.

“How To: Add Features to a Feature Class Using Python.” ESRI Technical Support, ESRI, 26

Nov. 2018, support.esri.com/en/technical-article/000018755.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook I. 2015, LRCCD Canvas ARC SP20

GEOG 375 Lecture 11189 Jennings, lrccd.instructure.com/courses/74982.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook II. 2015, LRCCD Canvas ARC SP20

GEOG 375 Lecture 11189 Jennings, lrccd.instructure.com/courses/74982.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook III. 2015, LRCCD Canvas ARC

SP20 GEOG 375 Lecture 11189 Jennings, lrccd.instructure.com/courses/74982.

Jennings, Nathan. "Demo 6D: Create and Use Table Joins." 21 Feb. 2020. GEOG 375, Spring

2020, American River College, Sacramento. Lecture materials, Module 3.

Jennings, Nathan. Video lectures, Modules 1-4. Geography 375. American River College,

Sacramento, California. Spring 2020.

“JSON Encoding and Decoding with Python.” Pythonspot, pythonspot.com/json-encoding-and-

decoding-with-python/. Accessed 27 March 2020.

“7 Examples to Understand Python Strftime() [Datetime and Time Modules].” A-Z Tech, 22 Dec.

2018, www.jquery-az.com/python-strftime/. Accessed 12 May 2020.

Severance, Charles. Python for Everybody: Exploring Data Using Python 3. CC ShareAlike 3.0,

5 July 2016, do1.dr-chuck.com/pythonlearn/EN_us/pythonlearn.pdf.

“urllib.error - Exception Classes Raised by Urllib.request.” Python 3.8.3 Documentation, Python

Software Foundation, docs.python.org/3/library/urllib.error.html.

“urllib.request – Extensible Library for Opening URL’s.” Python 3.8.3 Documentation, Python

Software Foundation, docs.python.org/3/library/urllib.request.html#module-urllib.request.

"USGS Significant Earthquakes, Past Day" (Version 1.0)[real-time data feed]. US Geological

Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/

significant_day.geojson. Accessed May 2020.

"USGS Significant Earthquakes, Past Week" (Version 1.0)[real-time data feed]. U.S. Geological

Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/

significant_week.geojson. Accessed May 2020.

"USGS Significant Earthquakes, Past Month" (Version 1.0)[real-time data feed]. U.S. Geological

Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/

significant_month.geojson. Accessed April, May 2020.

“What Is a File Geodatabase?” ArcGIS Pro Help, ESRI, 13 Dec. 2019, pro.arcgis.com/en/pro-

app/help/data/geodatabases/manage-file-gdb/file-geodatabases.htm. Accessed 8 April 2020.

“Zoom Map to the Extent of a Layer in arcpy.mp”. GeoNet, ESRI, community.esri.com/thread/

194310-zoom-map-to-an-layer-in-arcpymp-arcgis-pro-project. Accessed 13 April 2020.

