Aleta March
amarch2u@hotmail.com

GEOG 375, American River College
Final Project, Spring 2020

Summary

This project demonstrates the use of a stand-alone Python script to retrieve real-time GeoJSON
data from the USGS Earthquake Hazards website and utilize the data to create and export maps
showing the location and magnitude of significant earthquakes worldwide.

Purpose
The purpose of this project was to utilize Python and ArcPy scripting to update a cumulative
database of global earthquake events using data retrieved from the USGS Earthquake Hazards
Program real-time GeoJSON Summary Format Significant Earthquakes feeds and produce and
export to PDF format a series of maps comprising:
1) aglobal map of the location of earthquake events that occurred in the time frame of the
real-time feed and the time frame of the cumulative database
2) local maps of the location of each individual earthquake event that occurred during the
time frame (day, week, month) covered by the GeoJSON feed selected by the user.

Data Source

Raw data for this project were obtained from the USGS Earthquake Hazards website
https://earthquake.usgs.gov/earthquake/feed/v1.0/geojson.php which provides three real-time
Significant Earthquake Real-time Feeds updated every minute:

"USGS Significant Earthquakes, Past Day"
https://earthquake.usgs.qov/earthquakes/feed/v1.0/summary/significant_day.geojson
"USGS Significant Earthquakes, Past Week"
https://earthguake.usgs.qov/earthquakes/feed/v1.0/summary/significant_week.geojson
"USGS Significant Earthquakes, Past Month"
https://earthquake.usgs.qov/earthquakes/feed/v1.0/summary/significant_month.geojson

These “GeoJSON Summary Format” feeds use the GeoJSON format, based on the JavaScript
Object Notation (JSON) standard, to encode point geographic data structures (Crockford;
“GeoJSON”).

Methods

Pre-script Requirements

In order for the Python script to function, a file geodatabase must be available to store, query,
and manage spatial and non-spatial data (“What is a File Geodatabase?”’). Two file geodatabases
were created on disk from an ArcGIS Pro 2.4 project: one to handle the cumulative database and
feature class located at C:\temp\Final_Project\Data\eq_base.gdb and one to handle in real-time
table and feature class located at C:\temp\Final_Project\MyData\eq_output.gdb (“Create a File
Geodatabase”).

mailto:amarch2u@hotmail.com
https://earthquake.usgs.gov/earthquake/feed/v1.0/geojson.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_day.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_week.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson

Geoprocessing

Data transformation and information flow from one geoprocess to another was a particularly
important aspect of the script. Part | of the script governs the retrieval and extraction of data and
management of the tables and feature classes. Part Il controls map creation and export.

Part I: Data Management
The information flow begins with the retrieval of the GeoJSON data from the USGS website

(Severance 158-160, 163-165; “JSON Encoding”)

json
urllib.request, urllib.parse, urllib.error
Open connection "url handle" to URL
urlhand = urllib.request.urlopen(url)
Read data as bytes and convert to JSON string
data = urlhand.read().decode()
print('Retrieved ', len(data), ‘characters’)
Convert (deserialize) JSON string to Python dictionary
jsdata = json.loads(data)
Convert to JSON string, then "print it pretty" to examine data structure
print(json.dumps(jsdata, indent=4))

U

The GeoJSON data is printed out in an easy-to-read format similar to a Python dictionary:
{

"features": [
{
"type": "Feature",
"properties": {
"mag": 6.3,
"place": "132km W of Panguna, Papua New Guinea",

h
"geometry": {
"type": "Point",
"coordinates": [
154.3008,
-6.5105,
16.85
1

L
"id": "us60009c06"

g

Next, the data is extracted using indexing:

* magnitude = entry[[‘properties’][‘mag’]
* place = entry[‘properties’][‘place’]

* lon = entry[‘geometry’][‘coordinates’][0]
* lat = entry[‘geometry’][‘coordinates’][1]

4

The extracted data may have to be transformed if the format and type differ from that required by
the table fields. The following is a good example of a complicated transformation of the
earthquake event time to conventional date and time.

Event origin time (UTC) expressed in milliseconds
from midnight 01-01-1970

time = entry['properties']['time']

print ('UNIX Epoch Time:', time)

print (type (time))

epochtime = datetime.datetime (1970, 1, 1) +

datetime.timedelta (milliseconds = time) :> UNIX Epoch Time: 1587539027748
print('Date and Time (UTC):', epochtime) A
print (type (epochtime)) ¢<class 'int'»

§ Convert UNIX epoch time to string Date and Time (UTC): 2020-04-22 07:03:47.740000
str_epoch = str(epochtime) <class 'datetime.datetime’s
#print ("Epoch time as a string:', str_epoch)
- Date (UTC): 2020-04-22

e e et oy e xing class sty
print(*Date (UTC):', date) Event Origin Time (UTC): 07:03:47.740000
print (type (date))

<class 'str'>

Strip event corigin time from epoch time string
pos = str_epoch.find('")

event_time = str_epoch[pos + 11:]

print ('Event Origin Time (UTC):', event_time)
print (type (event time))

Let the Geoprocessing Begin!

arcpy.CreateTable_management |:> Empty Real-time Output Table
arcpy.AddField_management -

$ USG5 GeodS0N id value e St © - B
arcpy.AddField managenent (eq_out tbl path, 'USES IDY,'TE B0 55D b |Bele Mgk B b |l | Do e

Date(string)der from USGS GeoJSON tin
arcpy.AddField management (eq_out_tbl path,
USGS Event time(string)derived from USGS
arcpy.AddField management (eq_out_thl path,
USGS GeoJSON mag value
arcpy.AddField management (eq out tbl path, 'Magr
USGS G=0JS0N place valne
arcpy.AddField management (eq out tbl path,
USGS GeoJSON coordinates[l] value
arcpy.AddField management (eq out tbl path,
USGS GeoJSON coordinates[2] value
arcpy.AddField management (eq out tbl path,
USGS GeoJSON coordinates[3] value
arcpy.AddField management (eq_out_tbl path,
USG5 GeoJSON feed update time value(milli
arcpy.AddField management (eq_out_tbl path, 'l
Crested tahle Talde

print ('Cr

Cickto add new 1w,

nd added fizlds')

[Create base table if it does not exist using |:> Empty Cumulative Base Table
arcpy.Copy_management] Sawe [THos

Fied: Selecton: ;EE' Sitch

4 OBECTID USG5 0 Date Eient Time: Wanitude Place lm L&t Deth UpdeteTme
i

NEW 0N

InsertCursor |:> Populated Real-time Output Table

InsertRow Bt
Field: ﬁﬁd: EEEHE E[auk'e Selection: %Ew’d
4 OUECTID | U565 1D Date vent Time Wegninde Flae Lon lst Depth Update Time
|1 BN W50] 454 17km SE of Ocotilo Wels... 83 1016 158

1 usT000%14 000506 13:53:56.960000 68 205m MW of Saumbki ln_ 1288613 67949 107 1520068000000
Cick

arcpy.MakeTableView_management I::> Populated Real-time Feature Class
arcpy.management.XY TableToPoint

] &g ot table I B e base fable

Field: }.H.ﬁdc &Dﬂb{n E(a\u\ate Selection: ?éSw‘m:h =
4 OBIECTID | Shape USGS ID Date Event Time Magnitude Place Len Lat Depth Update Time
|1 Foint 35 10

100 454 17km S of Ocoilo Wels, CA -1160202 3301833

2 Point wsT000b14 20200506 135336960000 68 205km NW of Saumlaki, Indonesia 1208613 67949 107 1589065000000
Click o add ne row.

arcpy.da.SearchCursor |:> Base Table with Updated Rows
arcpy.da.UpdateCursor

with arcpy.da.SearchCursor(eq ocut tbl path, field list) SrowWs:
with arcpy.da.UpdateCursor(base table, field list) as uprows:
search loop counter = 0 #5hows current cycle of search loop through real-time feed table

as

for srow in Srows: # Assign search row field values used for comparison
rt_feed id = srow[0] # USGS_ID field value
rt_feed updated = srow[8] +# Update Time field value

print('Search loop cycle', search loop_counter)

if base_row count > 0: # If base table filled, compare entries with real-time feed entries
fOr Uprow in Uprows:
found = False
Set field values to be compared
base id = uprow([0]
base_updated = uprow[8]

if base_id == rt_feed id: # If a match is found
found = True

Check if more recent update available; update base table if so
if base updated < rt_feed updated:

uprows.updateRow (srow)

print (base_id, 'base table updated')

Add event row values to updated event rows list
updated_event_ rows.append(srow)

print ('USGS_ID', rt_feed id, 'lrow values added to updated event rows list')

If match found, end search
if found == Trus:
uprows.reset () # Cursor reset to first row for next loop

print ('Break out of loop') # Avoid unnecessary further search
break

£ found == False or base_row _count == 0: # If match not found in permanent db or db empty
print ('Event not found in permanent database.')
Add to end of list
new event rows.append(srow)
print ('USGS_ID', rt_feed_id,
print (srow)
uprows.reset ()
search loop counter

'event row values added to new_event rows list')

search loop counter + 1

4

Produces Two Lists of Row Tuples
updated_event_rows
new_event_rows

These lists are key to the remainder script. They contain the values of rows that will be updated
or added to the base table and feature class.

arcpy.da.InsertCursor I:> Base Feature Table with New Event Rows Added

InsertRow Sample Row Tuple

('us70008jr5', '2020-03-31", '23:52:31.094000', 6.5,
"72km W of Challis, Idaho', -115.1355972290039,
44.46030044555664, 14.529999732971191, 1587859423232.0)

[Create base feature class [Base Feature Class
|f |t does not eX|St using Eecﬁlﬂjhle Eeqiﬁulj Eeqﬁaae}nyls 8 eqbaefc X
arcpy.management. XY TableToPoint] i S 10 ok
4 OBECTID Shape UGS 1D Date Event Time Magnitude Plece Lon Lat Depth Update Time
Click to add new row
arcpy.da.UpdateCursor |:> Base Feature Class with Updated Rows

UpdateRow Sample Row Tuple

((-115.1355972290039, 44.46030044555664), 'us70008jr5', '2020-03-31",
'23:52:31.094000', 6.5, '72km W of Challis, Idaho', -115.1355972290039,
44.46030044555664, 14.529999732971191, 1587859423232.0)

NOTE: inserting or updating a row in a feature class is different than in a table because a geometry
must be written.

1) The field list must include the ‘Shape’ field in the initial position

2) The ‘SHAPE@XY’ geometry token may be used in place of ‘Shape’ in the field list

3) The row tuple to be inserted must have a Point value tuple (lon, lat) in the initial position
to populate the ‘Shape’ field (see highlighted tuple above).

Create update cursor for base feature class; replace 'Shape' field with 'SHAPERXY' to add 'Point' geometry
th arcpy.da.UpdateCursor (base fc, ['USGS ID', 'Date', 'Event Time', 'Magnitude', 'Place', 'Lon', 'lLat', 'Depth', 'Update Time']|) as uprows:
index = 0 #Counter for rows to be u
for uprow in uprows:
c matches the ID in the tuple of the updated event rows list, then update row

[index] [0]:
oint value as first element [nesded to add Po

% Create new tup y poi
index

xy = (updated event rows| [[5], updated event rows[index][6]) +# tr
% Create new update row tuple by appending the row elements of updated event rows to xy geometry tuple

new_tup = (xy,)

for i in range(0,9):
new tup = new tup + (updated event rows[index][i],)

% Update row of base feature class with element (tuple) of new tup

uprows. updateRow(new_tup)

print('Updated row in base feature class', new tup, '\n')
del uprow

d=1 uprows

arcpy.da.InsertCursor I:> Base Feature Class with New Event Rows Added

InsertRow ((-85.70989990234375, 16.93320083618164), 'us70008xeb', '2020-04-16",
'08:04:37.597000', 6.0, '55km NNE of Savannah Bight, Honduras',
-85.70989990234375, 16.93320083618164, 10.0, 1587751813120.0)

Part Il: Map Creation and Export
This segment of the script is responsible for the production and export of maps showing the

location of earthquake events.

Output maps are variations of two types, global and local:

1) one global map at full map extent showing the cumulative base layer overlaid by the real-
time layer produced by the 1, 7, or 30-day real-time feed) with graduated point symbols
based on earthquake event magnitude

2) agroup of local maps equivalent to the number of real-time events. Individual maps each
show a zoomed-in view of one real-time event, along with any previous events within the

map frame extent.

Geoprocessing is scant in this section. The arcpy.mp module is used to modify existing layout
elements, visibility of map frame layers, and map frame extents prior to the export of maps in
PDF format. The global map is printed at the full geographic extent of the base map.

g

USGS Significant Earthquakes |
04-16-2020 to Present P

e <300
® <400
@® <575

@ <750
. <10.00

Cumulative Events
nn00725272 UU5§;37§§37 o us7000903m e <300
1S70008289 ® <400

70008xh
.us 3 ® @ =575

us70008xeb
Pr2020123010 @ <750

us70009b14 us60009c06 . <10.00

us70 12, .

Real-time Feed:
Past 7 Days

Cumulative Period:
04-16-2020 to Present

ources: Esri, HERE, Garmin, Intermap, increment t P Corp, GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, MET], Esti China (Hong Kong),
() OpensStreetMap contributors, and the GIS User Communif ty

0 3,000 6,000
Kilometers

GCS: WGS 1564 Data Source: "U..Geological Survey Significant Earthquakes”,[resl-time deta feed]. Retrieved

Projection: WGS 1384 Mercator Auilisry Sphere from hitps://earthquak Teurthuakes/feed/vi. 0 | Somicart 1

Printed: 05-15-2020 17:40:30
Aleta March

A multi-step process is required to perform a zoom-in effect on an individual real-time event.
First, SelectByAttribute with a selection query produces a subset of the real-time layer and
GetExtent returns a derived extent (“Zoom Map”). Extent and scale of the map frame is then
controlled by the Camera object, mimicking zooming-in to a feature (‘Camera”).

Select current row for definition query

query = """"0SGS 10" = T ””+rt USGS_ID """t

arcpy. Sele ctLayﬂrByAttrlbLte management(rt lyr, "NEW SELECTION", query)
rt_lyr.definitionQuery = query

print(rt USGS ID, 'selected to map')

Get/Set layerfutent for selected row
layer extent = mapframe getLayerEytent(rt lyr, True, True)
print({'layer extent rt layer:' + str(layer extent))

Set mapframe camera to layer extent
napirame, canera, setExtent (layer extent)

Set mapframe scale (create zoom-in effect)
mapframe.camera,scale = 2400000.00

4

56km W of Tonopah, Nevada

EQ Magnitude (Mw)
Real-ime Cvents
- =300
® =400
® o7
® 50

. £10.00

Cumudative Fvents
® <100
® <400
@® =
® s
n00725272 Vi g
& @ o

Event Date (UTC):
05-15-2020
Magiu.:du:

6.5 Mw

g 07H7770
@

Real-time Fead:
Past 7 Days

Cumulative Period:
03182020 to Present

Wamest Meriuaks Ot
o of ol gy -

Ly watixgmebe 4 o vowrcen

logarthemic acede o

ources. Exfl HERE, Garmin; Intrmap, Increment ® Cof, GERROL UGS, Fa0) RS, NRCAN, Geogaze Glnoa.z ¥ NL Cronance Survey, 2 Japan, METL, £ Chin [Hoog Kong),
« ('.\.L.{l NP Lot o, and JA.'_i".‘v commurnly

o i 8z
|]
Kilomete s

3 VS 1N
Propeton WS 1834 Mo Asmbery Sphare from beegm,

Do UisiSwoled Survey Syt barkpadrerad e d fud) ermerd ik (515,200 11217
erthapisbo g e s tbsaacy Feek VL Darrerny) eyt _reeth specpion piraci

173km SSE of Lata, Solomon Islands

us70009f12

ources: Esri, HERE, Garmin, Intermap, increment P Corp,, GEBCO, USGS, FAQ, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong),

(<) Oy and the GIS User Ce

EQ Magnitude (Mw)

Real-time Events

e <300
® <400
@ <575

<10.00

Cumulative Events
e <3.00
® <4.00
@ <575

@ <750
O

Event Date (UTC):
05-12-2020
Magnitude:

6.6 Mw

<10.00

Real-time Feed:
Past 7 Days

Cumulative Period:
04-16-2020 to Present

0 50 100

Kilometers
GCS: WGS

1584 2: "U.5.Geological Survey Significant Earthquakes”,[real-ime data feed]. Ratrieved
Projection: WGS 1984 Mercator Ausiliary Sphere rthquak Jearthquakes/feed/v1. 0/ somificant

Data Sourcs
from http: _month.geojson.

Printed: 05-15-2020 17:40:30
Alets March

38km ESE of Falam, Burma

© harm an agar
Kaasahar Kolasb,

Katha

Mawiak

Lunalet

us70008xhp
Rangam ati

Haka

Chittagong

k3

o,

Monywa

psaavIoNye

%

Mandalay

p)

Sagaing

Cox's Bazar Myingyan

Pakokku

AMAR

S ‘
ources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRGAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong),

(c) OpenStreetMap contributors, and the GIS User Commiunity.

0 48 9%
Kilometers

GCS: W 1504 Data Source: "U.5.Geological Survey Sigrnificant Earthquakes”, [real-tme deta feed]. Retrieved
Projection: WGS 1984 Mercator Audliery Sphere sthqueke. b foed/vh.0f porke-sehi

:_month.geojson.

EQ Magnitude (Mw)
Real-time Events
e <3.00
® <400
@® <575

@ <750

Cumulative Events
<3.00

<10.00

<4.00

Event Date (UTC):
04-16-2020
Magnitude:

5.9 Mw

Real-time Feed:
Past 30 Days

Cumulative Period:
04-16-2020 to Present

by earthquake o its source:
logarithmic scale of 1-10

Printed: 05-15-2020 17:27:13
Aleta March

Challenges / Solutions

Much of the basic geoprocessing code related to the use of insert, search, and update cursors,
selection queries, and map production was taken directly from the video lectures given by
Professor Jennings this semester (Jennings, Video Lectures) and from the workbooks he
authored (Jennings, Python Primer 1, 2, 3). Early in the process of creating the script, I relied
heavily on these coding templates, to the point of using some of the same variable names, until |
gained familiarity with the concepts. As | progressed in my learning, | was able to customize and
build on these scripts, incorporating additional processes using original code.

Many programming issues resulted from my inexperience using Python and were eventually
overcome. One problem that was resolved after considerable effort pertained to the use of the
geometry token ‘SHAPE@XY’ when adding a feature to a feature class (“How To: Add
Features™). Silver lining: it gave me the opportunity to post something on GeoNet (“Add Row”).

Hello All,

My problem has been resolved. | was trying to use the geometry tokens (‘'SHAPE@X' and 'SHAPE@Y") to
replace the fields containing the floating point X and Y values for 'Lon’ and 'Lat'. Wrong tokens and wrong
fields!

By 1) using the 'SHAPE@XY" token instead of the 'Shape' field name in the arcpy.da.InsertCursor field list and
2) populating that field with a tuple containing the (Lon, Lat) values, the Point geometry is added.

It seems so simple now, but as a newcomer to ArcPy, it wasn't clear to me that the "Shape' field that, to my
eye, contained values in the feature class table that looked like the string 'Point', needed to be filled with a

tuple of floating point numbers. Lesson learned.

Aleta March

At the conclusion of the project, three problems remained unresolved. The first two issues are
related to basic ArcPy programming concepts and the third may be specific to either the input
data format or the program logic. In addition, a deficiency with respect to exception code was
noted.

PROBLEM 1: Unable to Control the Position of Rows Inserted into a Table

As a consequence of the manner in which the arcpy.da.InsertCursor and InsertRow functions
operate, new rows are inserted at the bottom of a table. This results in the creation of the
cumulative base table with the oldest event at the top of the table and the newest event at the
bottom, preserving the order of the table as it accumulates rows. The disadvantage is that it
increases the time it takes to search the existing base table, to determine the necessity of an
event addition or update. As the base table accumulates more rows, the search time will
become increasingly longer. If the order were reversed, the comparison of the real-time
events with the most recent events in the base table would be more efficient.

In my hunt for a solution, I tried to find a way to add a row to the top of the table or to begin
a search at the bottom of the table. My attempts to find an elegant solution were futile.
Perhaps, due to inexperience, my viewpoint was so narrow that | could not recognize the
alternatives.

PROBLEM 2: Unable to Change Spatial Reference of Mapframe

It was my original intent to customize the spatial reference of the exported maps of
individual events according to their geographic location and extent. Unfortunately, | was
unable to do so, resulting in all maps being produced with WGS 1984 geographic coordinate
system and WGS 1984 Mercator Auxiliary Sphere projection.

It is my understanding that arcpy.mp does not yet provide a way to change the spatial
reference of mapframes or maps (“Allow arcpy.mp to Modify”). According to Jeff Barrette
of the ESRI arcpy.mp team, that functionality will be available with ArcGIS Pro 2.6.

A potential workaround would be to make several maps within the ArcGIS Pro project, each
with a different spatial reference and set up one layout to contain multiple mapframes. The
Python script would then be used to select and make visible only the mapframe with the
appropriate spatial reference for the extent of the exported map.

Pursuing this workaround proved beyond the time constraints of this project. | was able,
however, to create one additional test map with a spatial reference of NAD 83 / USA
Contiguous Lambert Conformal Conic, as shown below.

EQ Event Map [T Landscape Layout
'us70008xhp

us70009b14
us70009b14 (@) 1570008289 us700098qd
us700098qd.
us7000903m

us60009c06

w3367270
uu60378837 uu60378292
pr2020123010, r2020123010

.us7 8xeb

1:214,282,709 ~ 123.5474721°E 32.6901940°S Vv || P

The corresponding mapframe was then added as a mapframe to the common layout, stacked
below the original mapframe.

% NAD 83

ocgg367270 e us7000903m
wuc0378887 LuE0378292 e us
us700038qd @) . o
us70008xhp
us70008xeb
pr202@8>3010@ 52020123010

ws70009b14 us70009b14
000906

WGS 1984

ources Esn, HERE, Garman, Intermap, increment P Corp, GEBCO, USGS, FAQ, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China {Hong Kong)
() OpenStrestiMap contrbutors, and the GIS User Community

PROBLEM 3: Point Features Occasionally Missing from a Map

| have been unable to explain the infrequent (two occurrences) of a point feature missing
from a map. The data format of the GeoJSON input data matches that of the extracted data
output. There were no discernable differences between the rows of the faulty point features
and the others.

1km S of View Park-Windsor Hills, CA

Where is) sans
USGS ID
ci390400304>?

in Die ge
Tyuana

Sources: Exri, HERE, Gammin, Intermap, increment P Corp, GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NI Ordnance Survey, Esri Japan, MET), Ezri China (Hong Kong
(c) OpenStreetMap contributors, and the GIS User Community

DEFICIENCY: Custom Exception Code Not Included

Other than the Try:/Except statement surrounding the script, custom exception code was not
created for the script (Jennings, “Demo 6D”). Custom exception code designed to handle
errors caused by a faulty Internet connection or a request timing out would have been
beneficial. The rare instances that triggered the runtime error, “Not signed into Portal”, were
due to an unstable or absent Internet connection. This was verified by intentionally turning
off the Internet hotspot and running the script to re-create the error message. Although I did
some preliminary research on the urllib.request and urllib.error submodules, I did not feel
that I had sufficient knowledge to create the code required to raise a connection or timeout
exception (“urllib.error”; “urllib.request™).

Conclusion

This project has helped to change my perspective on programming for GIS. Prior to taking this
course, | thought using Python was all about coding syntax and logic and troubleshooting and
frustration. Well, it is, but it is also so much more! It involves knowing your data and
understanding how the software for which you are coding functions “under the hood”. | know
that I have barely scratched the surface, but even this little bit of knowledge has given me a lot of
power to learn more. It has been a long journey from printing “Hello World!” back in January.

References
“Add Row to Existing Point Feature Class”. GeoNet, ESRI, community.esri.com/thread/252156-
add-row-to-existing-point-feature-class.

“Allow arcpy.mp to Modify Spatial Reference Property of Map/MapFrame”. GeoNet, ESRI,
community.esri.com/ideas/12767-allow-arcpymp-to-modify-spatial-reference-property-of-
mapmapframe.

“Camera”. ArcGIS Pro — ArcPy | Documentation, ESRI, pro.arcgis.com/en/pro-
app/arcpy/mapping/camera-class.htm

“Convert Python Datetime to Timestamp in Milliseconds.” Stack Overflow, 20 Dec. 2017,
stackoverflow.com/questions/41635547/. Accessed 12 May 2020.

“Create a File Geodatabase.” ArcGIS Pro Help, ESRI, pro.arcgis.com/en/pro-
app/help/data/geodatabases/manage-file-gdb/create-file-geodatabase.htm. Accessed 8 May 2020.

Crockford, Douglas. “Introducing JSON.” JSON, json.org/json-en.html.

“Datetime — Basic Date and Time Types — Python 3.7.2 Documentation.” Python.Org, Python
Software Foundation, 2002, docs.python.org/3/library/datetime.html.

“GeoJSON.” GeoJSON, geojson.org/.

“GeoJSON Summary Format.” USGS Earthquake Hazards, United States Geological Survey,
earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php.

“Guidelines for arcpy.mp.” ArcGIS Pro — ArcPy | Documentation, ESRI, pro.arcgis.com/en/pro-
app/arcpy/mapping/ guidelines-for-arcpy-mapping.htm#ESRI_SECTION1
B482E78268684B728BFF0636 AAFF40FD. Accessed 13 April 2020.

“How To: Add Features to a Feature Class Using Python.” ESRI Technical Support, ESRI, 26
Nov. 2018, support.esri.com/en/technical-article/000018755.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook I. 2015, LRCCD Canvas ARC SP20
GEOG 375 Lecture 11189 Jennings, Irccd.instructure.com/courses/74982.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook I1. 2015, LRCCD Canvas ARC SP20
GEOG 375 Lecture 11189 Jennings, Irccd.instructure.com/courses/74982.

Jennings, Nathan. A Python Primer for ArcGIS® Workbook I11. 2015, LRCCD Canvas ARC
SP20 GEOG 375 Lecture 11189 Jennings, Irccd.instructure.com/courses/74982.

Jennings, Nathan. "Demo 6D: Create and Use Table Joins." 21 Feb. 2020. GEOG 375, Spring
2020, American River College, Sacramento. Lecture materials, Module 3.

Jennings, Nathan. Video lectures, Modules 1-4. Geography 375. American River College,
Sacramento, California. Spring 2020.

“JSON Encoding and Decoding with Python.” Pythonspot, pythonspot.com/json-encoding-and-
decoding-with-python/. Accessed 27 March 2020.

7 Examples to Understand Python Strftime() [Datetime and Time Modules].” A-Z Tech, 22 Dec.
2018, www.jquery-az.com/python-strftime/. Accessed 12 May 2020.

Severance, Charles. Python for Everybody: Exploring Data Using Python 3. CC ShareAlike 3.0,
5 July 2016, dol.dr-chuck.com/pythonlearn/EN_us/pythonlearn.pdf.

“urllib.error - Exception Classes Raised by Urllib.request.” Python 3.8.3 Documentation, Python
Software Foundation, docs.python.org/3/library/urllib.error.html.

“urllib.request — Extensible Library for Opening URL’s.” Python 3.8.3 Documentation, Python
Software Foundation, docs.python.org/3/library/urllib.request.html#module-urllib.request.

"USGS Significant Earthquakes, Past Day" (Version 1.0)[real-time data feed]. US Geological
Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
significant_day.geojson. Accessed May 2020.

"USGS Significant Earthquakes, Past Week™ (Version 1.0)[real-time data feed]. U.S. Geological
Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
significant_week.geojson. Accessed May 2020.

"USGS Significant Earthquakes, Past Month" (Version 1.0)[real-time data feed]. U.S. Geological
Survey. Retrieved from https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/
significant_month.geojson. Accessed April, May 2020.

“What Is a File Geodatabase?”” ArcGIS Pro Help, ESRI, 13 Dec. 2019, pro.arcgis.com/en/pro-
app/help/data/geodatabases/manage-file-gdb/file-geodatabases.htm. Accessed 8 April 2020.

“Zoom Map to the Extent of a Layer in arcpy.mp”. GeoNet, ESRI, community.esri.com/thread/
194310-zoom-map-to-an-layer-in-arcpymp-arcgis-pro-project. Accessed 13 April 2020.

