
Elevation Toolbox without 
Spatial Analyst Extension
Mike Bean
American River College, GEOG 375: Intro to GIS Programming; Spring 2020
Contact Information: w0701505@apps.losrios.edu



Introduction

For my Introduction to GIS Programming project, I wanted to learn more about 
some open source Python libraries and whether you could these libraries to 
emulate some of the elevation tools that are provided with Esri’s licensed 
Spatial Analyst Extension.  I created a Python Toolbox with code to generate 
slope, aspect, and hillshade rasters using Python NumPy library and a tool to 
create contour lines using Python GDAL (Geospatial Data Abstraction Library). 
Esri ArcGIS Pro installs (and uses) both libraries so no additional Python 
modules needed to be installed.



Project Tasks

● Combine open source Python code with Esri ArcPy functions 
● Configure Python Toolbox template with parameters and calls 
● Test to see if output matches output from Spatial Analyst tools
● Document tool parameters



Slope Aspect Hillshade Tool

● Load Elevation Raster
● Get Information about Elevation Raster
● Create 3x3 Windows over Elevation Values
● Creating the X and Y Gradient Arrays
● Calculate Slope
● Calculate Aspect
● Calculate Hillshade
● Saving an Output Raster
● Tool Screenshot



Loading Elevation Raster
arcpy.AddMessage("Opening elevation raster...")

inRaster = arcpy.Raster(elevation_input)

arcpy.AddMessage("Reading elevation values...")

elevation_values = arcpy.RasterToNumPyArray(in_raster, "", "", "", NODATA)

elevation_rows, elevation_columns = elevation_values.shape



Getting Information about Elevation Raster
# Spatial Reference from input raster, we use for output rasters

sr = inRaster.spatialReference

cell_width = in_raster.meanCellWidth

cell_height = in_raster.meanCellHeight

lower_left = in_raster.extent.lowerLeft



Create 3x3 Windows over Elevation Values
# Create 3x3 windows over elevation values, window array will contain 9 array views 
after processing

window = []

    for row in range(3):

        for col in range(3):

            window.append(elevation_values[row:(row + elevation_rows - 2),

                                  col:(col + elevation_columns - 2)])



Creating the X and Y Gradient Arrays
# Calculate change in elevation in X direction

dz_dx = ((window[2] + window[5] + window[5] + window[8]) -

    (window[0] + window[3] + window[3] + window[6])) / (8. * cell_width)

# Calculate change in elevation in Y direction

dz_dy = ((window[6] + window[7] + window[7] + window[8]) -

    window[0] + window[1] + window[1] + window[2])) /  (8. * cell_height)



Calculate Slope

slope_rad = arctan(z_factor * sqrt(dz_dx * dz_dx + dz_dy * dz_dy))

slope = slope_rad * rad2deg

# todo: Need to determine how to deal with NODATA in a cell not on an edge!!!

# By using -9999 we get a slope value close to 90 degrees

slope[(slope > 89)] = NODATA



Calculate Aspect

aspect_rad = arctan2(dz_dx, -dz_dy)

# If terrain is flat, Esri outputs -1 as aspect, see:

#  
https://desktop.arcgis.com/en/arcmap/10.7/tools/spatial-analyst-toolbox/how-aspect-
works.htm

aspect = np.where(slope_rad == 0., -1, aspect_rad * rad2deg + 180)



Calculate Hillshade

arcpy.AddMessage("Calculating hillshade raster...")

hillshade = np.clip(255 * ((cos(zenith_rad) * cos(slope_rad)) + (sin(zenith_rad) 

    * sin(slope_rad) * cos(azimuth_rad - aspect_rad))),0, 255).astype(np.uint8)



Saving an Output Raster
if arcpy.Exists(hillshade_output):

    arcpy.Delete_management(hillshade_output)

hillshade_raster = arcpy.NumPyArrayToRaster(hillshade, lower_left, cell_width,

    cell_height)

arcpy.DefineProjection_management(hillshade_raster, sr)

hillshade_raster.save(hillshade_output)

arcpy.AddMessage("Saved hillshade raster")



Tool Screenshot



GDAL Contour Tool

● Load Elevation Raster
● Use Temporary Shapefile if Geodatabase
● Create Shapefile for Output
● Create Fields in Output Shapefile
● Generate the Contours
● Deleting Temporary Shapefile
● Tool Screenshot



Load Elevation Raster
# Get elevation values from elevation raster

arcpy.AddMessage("Opening elevation raster...")

ds = gdal.Open(elevation_input)

band = ds.GetRasterBand(1)

nodata = band.GetNoDataValue()

prj = ds.GetProjection()

srs = osr.SpatialReference(wkt=prj)



Use Temporary Shapefile if Geodatabase
if contour_feature_output.endswith(".shp"):

    arcpy.AddMessage("Creating shapefile for output...")

    scratch_name = None

    contour_shapefile = contour_feature_output

else:  # Create a temporary shapefile

    arcpy.AddMessage("Creating temporary shapefile for output...")

    scratch_name = arcpy.CreateScratchName("temp", data_type="Shapefile",

        workspace=arcpy.env.scratchFolder)

    contour_shapefile = scratch_name



Create Shapefile for Output
# Get OGR driver for shapefile

ogr_driver = ogr.GetDriverByName('ESRI Shapefile')

# Create shapefile for output

ogr_ds = ogr_driver.CreateDataSource(contour_shapefile)

# Create layer for new shapefile

    ogr_lyr = ogr_ds.CreateLayer(contour_shapefile, srs=srs, 
geom_type=ogr.wkbLineString25D)



Create Fields in Output Shapefile
# Create ID field

field_defn = ogr.FieldDefn('ID', ogr.OFTInteger)

ogr_lyr.CreateField(field_defn)

# Create ELEV field

field_defn = ogr.FieldDefn('ELEV', ogr.OFTReal)

ogr_lyr.CreateField(field_defn)



Generate the Contours

arcpy.AddMessage("Generating contours...")

gdal.ContourGenerate(band, contour_interval, contour_base, [], 1, nodata, ogr_lyr,

    0, 1)

arcpy.AddMessage("Contours generated.")

# Close files so we can delete if temporary

del ogr_lyr, ogr_ds



Deleting Temporary Shapefile
if scratch_name:

    arcpy.AddMessage("Copying contours...")

    arcpy.CopyFeatures_management(contour_shapefile, contour_feature_output)

    # Delete temp shapefile

    arcpy.AddMessage("Deleting temporary shapefile...")

    arcpy.Delete_management(contour_shapefile)



Tool Screenshot


